This article was downloaded by: On: *19 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Polymeric Materials

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713647664

Synthesis, Thermal Properties and Antimicrobial Study of Some Polyetherketones

D. A. Patel^a; M. R. Patel^a; R. M. Patel^a ^a Department of Chemistry, Sardar Patel University, V.V. Nagar, Gujarat, India

To cite this Article Patel, D. A., Patel, M. R. and Patel, R. M.(2001) 'Synthesis, Thermal Properties and Antimicrobial Study of Some Polyetherketones', International Journal of Polymeric Materials, 49: 1, 101 – 113 To link to this Article: DOI: 10.1080/00914030108035870 URL: http://dx.doi.org/10.1080/00914030108035870

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Intern. J. Polymeric Mater., 2001, Vol. 49, pp. 101-113 Reprints available directly from the publisher Photocopying permitted by license only

Synthesis, Thermal Properties and Antimicrobial Study of Some Polyetherketones

D. A. PATEL, M. R. PATEL and R. M. PATEL*

Department of Chemistry, Sardar Patel University, V.V. Nagar-388120 (Gujarat) India

(Received 3 January 2000; In final form 6 January 2000)

Low molecular weight polyetherketones [PEKS] were synthesized by Friedel-Crafts reaction from *m*-methyl anisole, 1,4-phenylene-dioxydiacetyl chloride [1,4-PDC], chloro-acetyl chloride [CAC], 1,2-dichloro ethane [DCE] and dichloro methane [DCM]. These polyetherketones were characterized by IR spectroscopy and Gel Permeation Chromatography. The thermal properties were studied by thermogravimetric analysis and differential scanning calorimetry. The characteristics of the decomposition reaction were evaluated by using Broido and Doyle methods. Resins tend to decompose at 200°C. Resins show significant antimicrobial activity against microorganisms such as bacteria, fungi and yeast. So they can be used as biocides for various applications.

Keywords: Polyetherketones; Thermal analysis; Antimicrobial activity; Friedel-Crafts reaction

INTRODUCTION

It is possible to synthesize low molecular weight resins containing various functional groups that are gaining prominence through their various microbial and pharmacological properties [1-4]. Due to their particular characteristics, properties and variety of structures, these resins can compete with some of the known materials as far as their properties and specific applications are concerned [5-9]. With these in mind, polyetherketones were prepared and tested for their

^{*}Corresponding author.

biocidal properties against various microorganisms such as bacteria, fungi and yeast.

EXPERIMENTAL

Materials

All the chemicals used for the synthesis were of laboratory grade.

Synthesis of Polyetherketones

To a mixture of 1,4-PDC, nitrobenzene and anhydrous AlCl₃, *m*methylanisole and CAC/DCE/DCM were added and kept at 0°C for one hour. After that, in some cases appropriate reagent was added (Tab. I) at a particular temperature. The reaction mixture was heated at 120°C for 4 hours. The reaction mixture was then poured into (1:1) 200 ml of H₂O:con. HCl mixture with stirring. The tacky product was separated out. It was subjected to steam distillation to remove nitrobenzene. The dark brown coloured solid thus obtained was dried and powdered. The resin obtained was further purified using acetone as solvent and distilled water as nonsolvent. Condition for preparation of all PEKs are shown in Table I and in the reaction scheme.

Characterization

The experimental details for the characterization of the resins are the same as reported earlier [10, 11].

Microbial Scanning

The polyetherketones were used to screen their microbial activity against microorganisms such as bacteria (*B. Subtilis, E. Coli, P. Fluorescens, S. Citreus*), fungi (*A. Niger, S. Pulverulentum, T. Lignorum*) and yeast (*C. Utilis, S. Cerevisiae, P. Stipitis*) which were grown in N. Broth, Sabourand's Dextrose Broth and YEDP medium respectively. The details of the experimental procedures are reported elsewhere [10, 11].

102

(a) For resin no. 1

(b) For resin no. 2

(c) For resin nos. 3,4

For resin no. 3 : $R = --CH_2CH_2$ For resin no. 4 : $R = --CH_2$

SCHEME

(d) For resin nos. 5,6

For resin no. 6. : R = --- CH2----

(e) For resin no. 7

Results and Discussion

Using Friedel-Crafts reaction the polyetherketones were synthesized. They are highly coloured, ranging from brown to dark brown solids. All the resins are soluble in common organic solvents such as acetone, DMF, dioxane etc.

The chlorine content of the resins ranged from 5.8 to 6.4 wt% determined by Carius method [12]. The number average molecular weight (\overline{Mn}), weight average molecular weight (\overline{Mw}) and polydispersity $(\overline{M}w/\overline{M}n)$ values of PEKs varied from 4260 to 5160, 8885

104

2011
January
19
10:26
At:
Downloaded

es	ine Remarks ^b	1,4-PDC + PhNO ₂ + AlCl ₃ was mixed and <i>m</i> -methyl anisole was added within 10 min.	To, 1,4-PDC + PhNO ₂ + AlCl ₃ , <i>m</i> -methyl anisole was added, content was kept at 60° C for 1 h. and to this CAC was added.	To, 1,4-PDC + PhNO ₂ + AlCl ₃ , <i>m</i> -methyl anisole was added, content was kept at 60° C for 1 h. and to this DCE was added.	To, 1,4-PDC + PhNO ₂ + AlCl ₃ , <i>m</i> -methyl anisole was added, content was kept at 60° C for 1 h. and to this CAC was added. After 1 h., DCE was added.	To, 1,4-PDC + PhNO ₂ + AlCl ₃ , <i>m</i> -methyl anisole was added, content was kept at 60° C for 1 h. and to this CAC was added. After 1 h., DCM was added.	To, 1,4-PDC + PhNO ₂ + AlCl ₃ , <i>m</i> -methyl anisole was added, content was kept at 60° C for 1 h. and to this DCM was added.	To, 1,4-PDC+ PhNO ₂ + AICl ₃ , <i>m</i> -methyl anisole was added, content was kept at 60°C for 1 h. and to this DCE was added. After 1 h., DCM was added.
erketon	Chlori (%)	I	6.4	6.1	6.2	6.0	5.9	5.8
preparation of polyethe	Physical state and softening range ^a (°C)	Brown powder 136-147	Reddish brown powder 125-132	Dark brown powder 133–142	Dark brown powder 128–139	Blackish brown powder 131 – 144	Blackish brown powder 130-140	Dark brown powder 129–141
for the	Yield (%)	54.8	52.0	49.8	51.5	52.4	53.9	50.6
ondition	AICl ₃ (mol)	0.06	0.06	0.06	0.06	0.06	0.06	0.06
ILE I C	DCM (mol)	I	1	I	0.015	I	0.01	0.01
TAI	DCE (mol)		I	0.015	I	0.01	I	0.01
	CAC (mol)	l	0.015	ι	ļ	0.01	0.01	l.
	1,4-PDC (mol)	0.03	0.015	0.015	0.015	0.01	0.01	0.01
	m-methyl anisole (mol)	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Resin number	1	0	ε	4	S	9	L

Reaction temperature: 120°C; Reaction time: 4h; Solvent: Nitrobenzene (25 ml). ^aFrom DSC thermograms. ^bThe general method of preparation is already given in the text. Here specific changes for each preparation are indicated.

to 12900 and 1.87 to 2.55 respectively which were measured by WATERS MAXIMA-820 GPC data processing software, (Tab. II). All the resins soften in the range of 125° C to 150° C. PEKs prepared using *m*-methyl anisole gave about 55% yield of product.

Infrared Spectroscopy

The IR spectra of these resins show all the expected characteristic group frequencies (Tab. III) and resemble each other in all aspects. These suggest that all the PEKs are linear varying in their average molecular weights. Aromatic substitution was confirmed by the presence of C—H vibration in plane and out of plane bending at around $820-1200 \text{ cm}^{-1}$. Bands at $2920-2980 \text{ cm}^{-1}$ observed in the spectra of all the samples are attributed to —CH— stretching of alkanes. The carbonyl band appears at about 1700 cm^{-1} for all the resins. A band at around 665 cm^{-1} is a contribution from C—Cl. Aromatic methyl group gives two bands at around 1050 cm^{-1} and 1350 cm^{-1} which are symmetric stretching and asymmetric stretching respectively. The band around 1250 cm^{-1} is due to ϕ —O—CH₂— (ether) group presence in PEKs.

Thermal Analysis

Tables IV and V show TG and DSC analysis of PEKs. It was observed that the resins show two step decomposition. The weight loss involved in the first of the decomposition ranged from 20-45% and in second step of the decomposition ranged from 45-99%. Most of the resins decomposed in the temperature range of $190^{\circ}-600^{\circ}$ C.

Resin number	Mn	$\overline{M}w$	Mz	$\overline{M}z + 1$	Polydispersity Mw/Mn	<u>M</u> z/Mn	$(\overline{M}z+1/\overline{M}w)$	Mol. wt. at maximum peak height
1	4840	12345	30735	43195	2.55	2.49	3.5	5100
2	4590	10555	31875	34515	2.30	3.02	3.27	4535
3	4265	9295	22770	26950	2.18	2.45	2.9	4875
4	5160	12900	30830	42570	2.50	2.39	3.30	4395
5	4785	8945	22810	28620	1.87	2.55	3.2	5225
6	4680	8885	20620	24880	1.90	2.32	2.8	4265
7	4865	10800	31755	36070	2.22	2.94	3.34	5170

TABLE II Average molecular weights of polyetherketones by GPC

		IADLE III	Assignment	OI IIIIAICU III	educines of p	ouyeulerker	tones prep		n-meunylanise	JIC	
						$CH_2 b$	ending	Aromati	ic methoxyl		
	СН						Rocking	60	dno1.		
	of aromatic	Phenyl		Substituted a	tromatic ring		of CH_2	Assym.	Symmetric	c=0	$-H_2C-CI$
Resin number	Ring and CH ₂ of bridge(cm ⁻¹)	vibration (cm ⁻¹)	$\phi - O - CH_2$	CH in plane (cm^{-1})	CH out of plane (cm ⁻¹)	Scissoring (cm^{-1})	of bridge (cm ⁻¹)	stretching (cm ⁻¹)	stretching (cm ⁻¹)	stretching (cm ⁻¹)	stretching (cm ⁻¹)
1	2980	1505	1210	1170	845	1460	710	1340	1030	1700	640
7	2934	1513	1265	1110	822	1455	715	1352	1025	1710	694
ŝ	2975	1500	1240	1130	830	1430	720	1320	1030	1690	650
4	2965	1510	1245	1125	835	1445	708	1335	1035	1685	665
5	2927	1513	1251	1180	822	1420	715	1345	1084	1690	655
9	2920	1533	1254	1193	827	1425	713	1360	1073	1700	069
7	2930	1500	1250	1180	830	1460	750	1380	1050	1695	660

-methylanisole TABLE III Assionment of infrared frequencies of polyetherketones prepared from m

Resin	Weight	t loss (%	6) at ten	nperatur	e up to	Тл ^а	<i>IPDT</i> ^b	IDT ^c	Ts ^d	Tmax ^e
number	200°C	300° <i>C</i>	400° <i>C</i>	500° <i>C</i>	600° <i>C</i>	$(^{\circ}C)$	$(^{\circ}C)$	(°C)	$(^{\circ}C)$	$(^{\circ}C)$
1	-	19	45	88	95	470	367	190	412	455
2	1.5	21	32	85	95	490	390	190	445	480
3	_	12	26	82	97	507	420	245	465	495
4	_	8	24	66	97	508	425	260	492	500
5	3	27	38	61	98	520	366	190	480	510
6	_	18	27	51	99	538	412	200	504	535
7	_	15	29	45	98	530	415	210	506	510

TABLE IV Characteristic temperature for thermal degradation of polyetherketones evaluated from TGA

^aCharacteristic end-of-volatilization temperature.

^bIntegral procedural decomposition temperature.

^cInitial decomposition temperature.

^dHalf-volatilization temperature.

^eMaximum rate of decomposition temperature.

The activation energy calculated using Broido [13] method varied from 24.0 to 27.6 K cal·mol⁻¹. The values of the characteristic degradation temperature have been evaluated by Doyle's [14] method and are listed in Table V. The values of heat of fusion (ΔH_f) evaluated from DSC curves, range between 6.8 to 8.2 cal·gm⁻¹. Resins show higher IPDT values indicating higher thermal stability.

From the above results and discussion, it is clear that the resins exhibit moderate thermal stability. The rate of decomposition is different for all the PEKs depending upon the experimental condition, the various monomers and their concentrations.

Microbial Activity

The effect of PEKs on the growth of microorganisms is listed in Tables VI-IX. From the data, it is revealed that the effect of polyetherketones on the growth or bacteria, fungi and yeast is not identical. Resins nos. 2, 5 and 6 show more than 50% inhibition of bacteria. All the resins are proved to be effective against *B. Subtilis E. Coli*, and *S. Citreus. P. Fluorescens* shows maximum growth against all the resins (Tabs. VI and VII). All the PEKs show inhibition of growth of *A. Niger, S. Pulverulentum* and *T. Lignorum* upto 40 hours. Resin no. 1 fails to control the growth of fungi during the experimental period (Tab. VIII). Resins nos. 2, 5 and 6 control the growth of yeast to a considerable extent (Tab. IX). From these

	I VDLE V	MINCUC Par		ne accombosinon	or polycuic	rivervices (prepared		curytamsore/ rout	IN USUIG TO A	
	T_{ℓ}	emperature	Weight	Temperature	Weight	Decomposition		Energy		Heat
	-	ange for	loss for	range for	loss for	temperature		of activation ^a	Order	of fusion ^b
Resin		Step-1	Step-1	Step-2	Step-2	range		'EA'	of reaction	∇H_{f}
number		(°Č)	(°Č)	(°Č)	(°Ĉ)	$(\circ \tilde{C})$	ΔT	$(kcalmol^{-1})$	и	$(cal \cdot gm^{-1})$
1		220-550	95	i	1	220-550	330	24.0		7.5
2		(90 - 250)	13	250-550	95	190 - 550	360	25.7	1	7.7
3	(1)	245-328	17	328 - 560	76	245 - 560	315	27.2	-	6.8
4	()	260 - 340	16	340 - 550	97	260 - 550	290	23.8	1	6.9
5	-	(90 - 275)	23	275 - 560	98	190 - 560	370	26.8	1	7.2
6	••	210 - 310	25	310 - 560	66	210 - 560	350	25.5	1	8.0
7	. 1	230-360	28	360 - 570	86	230 - 570	340	27.6	1	8.2
1.3	100									

TABLE V - Kinetic narameters for the decommosition of nolvetherketones (menared from m-methylanisole) found using TG and DSC

Rate of heating: 10°C/min. ^aBroido method. ^bFrom DSC thermograms.

						,				•						
Incubatic	ш			B. sut	otilis							E. co	li			1
time				Res	in numbe	arb						Resi	n number	a,		ļ
(4)	Control ^a	-	5	ю	4	5	6	6	Control ^a		2	e	4	S	9	2
20	50	45	4	6	9	4	4	9	54	38	4	s	6	4	4	9
24	59	53	9	×	7	7	9	10	62	41	4	7	8	S	9	7
28	70	62	6	10	13	11	8	20	75	50	9	10	10	×	9	10
32	83	70	14	14	18	13	16	29	85	54	8	13	12	12	٢	16
36	68	78	15	21	23	16	18	35	92	58	6	17	20	16	8	22
40	95	80	16	32	26	18	18	41	98	61	10	19	23	16	11	26
4	66	83	17	34	27	20	19	43	100	<u>66</u>	11	19	24	17	12	28
48	100	84	17	35	28	20	19	45	100	68	11	20	24	17	13	28
^a Concentr	ation of each 1	resin was	500 ppm.													
Control	loes not conta	in any of	the resun.													

TABLE VI Effect of polyetherketones (prepared from m-methylanisole) on the growth (%) of B, subtilis and E, coli

Downloaded At: 10:26 19 January 2011

Incubation				P. fluore	scens							S. cit	reus			
time				Resi	n number	e.						Resi	n numbe	٩		
(<i>y</i>)	Control ^a	-	2	m	4	5	9	1	Control ^a	-	6	е	4	5	9	-
20	63	51	1	12	11	6	6	4	59	48	m	5	7	4	4	6
24	70	59	12	19	20	14	13	25	6 6	54	5	6	10	9	9	13
28	79	67	25	31	36	30	28	45	79	60	6	16	61	11	8	20
32	87	75	37	45	53	43	41	53	85	67	12	27	32	17	10	37
36	95	86	49	49	2	51	50	74	91	76	14	36	48	21	17	49
40	100	91	51	76	70	61	51	80	97	81	16	43	55	24	19	99
44	100	95	52	82	76	63	59	88	100	84	18	48	57	26	21	61
48	100	76	52	84	78	64	60	6	100	87	18	49	58	26	21	61
^a Concentrati ^b Control doe	on of each re s not contain	sin was 1 any of	500 ppm. the resin.													

2011
January
19
10:26
At:
Downloaded

	IABLE	VIII Ellec	t of polyett	lerketones (F	repared iro	m m-meuny	anisole) on	A. niger, 5	. purverment	um and I.I	ignorum	
		A. n	iger			S. pulver	ulentum			T. lign	orum	
I	Hd	Sugar	Dry		Hd	Sugar	Dry		Ηd	Sugar	Dry	
Resin	of the	utilized	weight	Growth	of the	utilized	weight	Growth	of the	utilized	weight	Growth
number ^a	solution	(%)	(mg)	(%)	solution	(%)	(mg)	(%)	solution	(%)	(mg)	(%)
Control ^c	3.7	99.4	910	100	2.7	99.5	720	100	2.9	99.1	865	100
1	3.8	96.5	865	95	3.1	92.7	612	86	3.1	93.6	809	93.5
2	4.6	39.3	346	38	4.4	40.1	194	27	4.0	41.5	329	38
3	4.1	87.5	728	80	3.9	56.4	324	45	3.4	83.3	640	74
4	4.1	90.3	746	82	4.0	52.5	302	42	3.6	72.2	557	69
5	4.3	66.2	546	60	4.3	40.7	223	31	3.8	52.7	415	48
9	4.3	68.7	491	54	4.4	42.5	202	28	3.8	58.4	432	50
7	3.9	95.6	837	92	3.8	60.8	360	50	3.4	81.3	649	75

^aConcentration of each resin was 500 ppm. ^bAfter 40 h. ^cControl does not contain any of the resin.

	C. ut	ilis	S. ce	revisiae	P. s	tipitis
Resin	Incubation	time (h)	Incubatio	on time (h)	Incubatio	on time (h)
number -	24	48	24	48	24	48
Control ^b	60	100	52	100	49	100
1	48	87	33	72	36	80
2	9	20	2	6	5	29
3	21	58	5	17	13	65
4	17	45	4	14	13	68
5	15	34	4	10	5	35
6	13	32	3	8	9	40
7	21	60	10	29	14	72

TABLE IX Effect of polyetherketones (prepared from *m*-methylanisole) on the growth (%) of *C. utilis*, *S. cerevisiae* and *P. stipitis*

^aConcentration of each resin was 500 ppm.

^bControl does not contain any of the resin.

results it is observed that the presence of chlorine in the polymers, experimental conditions and structure of the resins play an important role in controling the growth of microorganisms.

References

- Pandrin, E. F., Solovski, M. V., Kopeikin, V. V., Gavrilova, I. I., Gorbunova, O. P. and Nesterov, V. V. (1979). *Khim, Fiz. Vysokomol Soedin., Tezisy Dokl. Nauchn. Knof., Akad. Nank.* USSR, Leningrad, pp. 71, 72; C.A. 93, 126293_m (1980).
- [2] Gebelein, G. C. and Carraher, E. C. (1982). ACS Symp. Ser., 186, 1-9; C.A. 97, 2332m.
- [3] Kuzetsava, F. I. (1985). Zashch. Rajt., 2, 42-45; C.A. 102, 144726p (1985).
- [4] Butalova, S. T., Tyaterev, L. S. and Strashnova, T. T. (1985). Zashch. Rajt., 2, 26, 27; C.A. 103, 144725_m (1985).
- [5] Yukel'son, I. I., Kozyreva, E. F., Garmanov, V. I. and Glukhovskol, V. S. (1965). Zh. Prikl Khim., 38(5), 1165-7; c.f.C.A. 63,7121_d (1965).
- [6] Nakmura, Y. (1954). J. Chem. Soc. Japan, 37, 814-16; c.f.C.A. 49,10661e (1955).
- [7] Telvina, A. S., Ozhalilov, A. T. and Kolesnikov, G. S. (1970). USSR (CICOBf), 255263, c.f.C.A. 73,4347y.
- [8] Telvina, A. S., Ozhalilov, A. T. and Kolesnikov, G. S. (1970). USSR (CICOBf) 248975, c.f.C.A. 72,91021_h.
- [9] Yoneda, H. and Kukawa, I. (1988). (Asahi Chemical Industry Co. Ltd.) (CICO8G 65138), JF 62,253,619, Appl. 86196,699, c.f.C.A. 108, 151202_s.
- [10] Patel, N. Z., Patel, J. N., Ray, R. M. and Patel, R. M. (1991). Angew. Macromol. Chem., 192, 103.
- [11] Patel, N. Z., Patel, J. N., Ray, R. M. and Patel, R. M. (1991). High Perf. Polym., 3, 151.
- [12] Bance, S. (1980). Handbook of Practical Organic Microanalysis, Ellis Horwood Ltd., Chichester, p. 101.
- [13] Broido, A. (1969). J. Polym. Sci., A-29, 1761.
- [14] Doyle, C. D. (1961). Anal. Chem., 33, 77.